
NFV Reference Design For A Containerized vEPC Application

Solution Summary 1

NFV Reference Design For A Containerized vEPC Application

Solution Summary

Intel Corporation

Data Center Network Solutions Group

 Yu Zhou Solutions Technology Engineer

 Cindy Spear Solutions Technology Engineer

 Xuekun Hu Platform Application Engineer

 Ivan Coughlan Network Software Architect

 Kuralamudhan Ramakrishnan Network Software Engineer

 Arindam Saha Solutions Technology Manager

ZTE Corporation

Telco Cloud and Core Network Product Group

 Jinlei Zhu System Architect

 Lin Yang System Architect

 Jianfeng Zhou System Architect

 Minghe Zhao System Architect

 Mingxing Zhang System Architect

 Wei Luo Project Manager

NFV Reference Design For A Containerized vEPC Application

Solution Summary 2

Revision History

Date Revision Comments

June 12,

2017
1.0 Version 1.0

NFV Reference Design For A Containerized vEPC Application

Solution Summary 3

Contents

1.0 Introduction .. 6

2.0 Intel Container Platform for Telco VNF .. 8

2.1 Acceleration for Container Network Path .. 10

2.2 Multus CNI Plugin ... 12

2.3 SR-IOV CNI Plugin ... 16

2.4 Node Feature Discovery (NFD) .. 19

3.0 ZTE Cloud Native vEPC .. 22

3.1 ZTE Core Network NFV Solution Overview .. 22

3.2 ZTE Cloud Native vEPC Solution .. 23

4.0 User Scenario and Demonstration .. 25

4.1 vManager Deployment Guide ... 25

4.2 vEPC Deployment Scenario .. 26

4.3 vEPC Scaled Scenario.. 28

4.4 Service Instance Redundancy Scenario .. 29

5.0 Ingredients .. 30

6.0 References ... 32

7.0 Acronyms .. 33

NFV Reference Design For A Containerized vEPC Application

Solution Summary 4

Intel Confidential – Shared Under NDA

Figures

Figure 1 : SR-IOV VF promoted from Kernel to User space .. 10

Figure 2 : Virtio Network Device Communication .. 11

Figure 3 : Virtio Network Device in User Space ... 11

Figure 4 : Multi-Homed Pod.. 13

Figure 5 : Multus Network Workflow in Kubernetes .. 13

Figure 6 : Flannel and SR-IOV Plugins .. 19

Figure 7 : ZTE NFV Solution Overview .. 23

Figure 8 : Cloud Native vEPC Architecture .. 23

Figure 9 : Cloud Native vEPC Scenarios .. 24

Figure 10 : App Image in Software Warehouse ... 27

Figure 11 : App Blueprint in Blue Print Center .. 27

Figure 12 : App Deployed Successfully .. 27

Figure 13 : vEPC Workflow .. 28

Figure 14 : vEPC Demo Topology .. 31

NFV Reference Design For A Containerized vEPC Application

Solution Summary 5

Intel Confidential – Shared Under NDA (Is this needed?)

Tables

Table 1. Multus interface table. ... 15

Table 2. Hardware Bill of Materials .. 30

Table 3. Software Versions ... 30

NFV Reference Design For A Containerized vEPC Application

Solution Summary 6

Intel Confidential – Shared Under NDA

1.0 Introduction

Intel Corporation, the world‟s biggest semiconductor company, is spearheading the

transformation of the network and communications industry from traditional dedicated

hardware equipment to software defined networks (SDN) and network function

virtualization (NFV) leveraging the economies of scale and innovations of high volume

servers. In this reference design, Intel provides an open source container platform on which

any commercial containerized VNF can be deployed.

ZTE Corporation, the world's leading integrated tele-communications solutions provider, is

one of China's largest communications equipment makers. In this reference design, ZTE

provides a containerized virtual Evolved Packet Core (vEPC) VNF, integrated on Intel‟s

delivered open source container platform.

Intel and ZTE partnered with CMCC (China Mobile Communications Corporation) to

develop a bare metal reference design that lays the foundation for CMCC to offer efficient,

easily deployable containerized services and fast evolution of their cloud infrastructure. Intel

and ZTE are planning to expand the solution to utilize both the bare metal container as

well as the containers in VMs reference designs, leading to a true unified infrastructure

that can support multiple clouds.

This paper describes the reference design and a demo utilizing the design. For the demo,

Intel provided an open source container platform to deploy proprietary VNFs from multiple

vendors. ZTE integrated their containerized vEPC application with improved performance

by using Intel EPA (Enhanced Platform Awareness) features. The demo of the bare metal

reference design, while showcasing a proof point for the industry, bolsters the build-up of

cloud-native services leading to large-scale platform deployment in the near future. Intel

and ZTE collaborated to setup the demo in CMCC lab to present how 1) A proprietary VNF

with cloud-native and micro-service architecture can be deployed on an open source

container platform. 2) A containerized VNF can support heavy data traffic through

acceleration technologies like DPDK, SR-IOV, and virtio.

CMCC uses the joint work described in this paper to explore the feasibility and necessity of

technology fusion for container and NFV, Cloud transformation, and leverage the

experience to contribute to the OPNFV OpenRetriever project.

NFV Reference Design For A Containerized vEPC Application

Solution Summary 7

Intel Confidential – Shared Under NDA (Is this needed?)

NFV Reference Design For A Containerized vEPC Application

Solution Summary 8

Intel Confidential – Shared Under NDA

2.0 Intel Container Platform for Telco VNF

Kubernetes is an open source system for automating deployment, scaling, and management

of containerized applications. It originated from Google and is the anchor project in the

Cloud Native Computing Foundation (CNCF) which is governed by the Linux Foundation

(LF). The reference design makes use of several open source components, including

Kubernetes, Docker, SR-IOV CNI Plugin, Multus CNI Plugin, and NFD. Refer to Table 3.

Software Versions within this document for further details.

For network management, Kubernetes uses the Container Network Interface (CNI) API

specifications and plugin framework. The CNI is primarily a specification governing the API

for network provider integration and a framework to host those provider‟s plugin

implementations. It originated from CoreOS and is widely adopted by Container

Orchestration Engines (COE) such as Mesos, Cloud Foundry, and of course Kubernetes.

In NFV use cases, one key requirement is the functionality to provide multiple network

interfaces to the virtualized operating environment of the Virtual Network Function (VNF).

This is required for many various reasons, such as:

1. Functional separation of management, control and data network planes.

2. Support for termination of different and mutually exclusive network protocol stacks.

3. Support for implementation of different network SLAs.

4. Support for physical platform resource isolation.

Currently, while the CNI does provide a mechanism to support the multiple network

interfaces requirement, Kubernetes does not. To address this gap, Intel introduced the

Multus CNI plugin [13].

Another challenge for the Containerized VNF is the lack of support for physical platform

resource isolation to guarantee network I/O performance and limit the impacts of

operating in a co-located cloud environment. Single Root I/O Virtualization (SR-IOV) [11]

is a technology that is currently widely used in VM-based NFV deployments, due to the

increased network performance it provides by enabling direct access to the network

hardware. Adding support for SR-IOV in Containers significantly impacts the network

performance above what is available already. For this reason, Intel introduced the SR-IOV

CNI plugin [12]. With this plugin, a Kubernetes pod can be attached directly to an SR-IOV

Virtual Function (VF) in one of two modes. The first mode uses the standard SR-IOV VF

NFV Reference Design For A Containerized vEPC Application

Solution Summary 9

Intel Confidential – Shared Under NDA (Is this needed?)

driver in the Container hosts kernel and the second mode supports DPDK VNFs which

execute the VF driver and network protocol stack in user space to achieve a network data

plane performance which greatly exceeds the ability of the kernel network stack.

Data centers are heterogeneous by nature, comprised of nodes possessing a range of

compute, network and other platform capabilities, features and configurations, due to

incremental additions of varied systems over time.

For performance sensitive applications, such as a VNF, to achieve optimum performance or

indeed successfully execute on the server at all, it is required that it be able to express its

requirements for specific platform capabilities and in some circumstances for consumable

platform resources to be allocated to it.

To cater to these needs, Intel introduced Enhanced Platform Awareness (EPA) [16][17]

into the Kubernetes environment which exposes key features in the Intel silicon to enhance

performance and security. EPA has been available within the OpenStack environment since

the Kilo release.

Kubernetes scheduling criteria mostly only takes compute resources, CPU and memory, into

consideration. To address this, , Intel introduced Node Feature Discovery (NFD) [14], a

project which is in the Kubernetes incubator and aims to expose the capabilities and

consumable resources existing on the servers in the cluster to the Kubernetes scheduler

enabling it to make enhanced workload placement decisions. For example, NFD today can

be used to discover servers with CPUs capable of executing AVX instructions and/or are

capable of providing SR-IOV network plumbing.

Intel is committed to enabling NFV use cases on Container platforms, evolving the solutions

over time, driving significant core changes into the Kubernetes system and establishing

standards in order that we achieve continuous improvement of the overall ecosystem and

user experience.

To this end, Intel has planned NFV enabling work in Kubernetes for DPDK/Huge Pages,

CPU Pinning & Isolation (CPU Core Manager for Kubernetes), RDT, FPGA, QAT (IPSEC use

case) Network QoS and multiple interface support evolution.

NFV Reference Design For A Containerized vEPC Application

Solution Summary 10

Intel Confidential – Shared Under NDA

2.1 Acceleration for Container Network Path

The original container network path is through veth pair. It is a low efficient network

solution for traffic forwarding. Intel now provides two alternative ways to enhance

container data path. 1) SR-IOV. 2) Virtio-user. Intel integrates both features on DPDK – a

highly efficient user space polling mode driver (PMD). Therefore, the container platform

can support heavy traffic VNF (i.e. vEPC, vRouter) for Telco Cloud. User tasks to specific

SR-IOV or Virtio-user depends on their usage model. For further details, refer to document

SR-IOV for NFV Solutions – Practical Considerations and Thoughts [11].

1. For SRIOV – what should be emphasized here is to transition from kernel mode to

user mode, which can provide a much higher performing data path.

Figure 1 : SR-IOV VF promoted from Kernel to User space

2. For Virtio, it is a native Linux kernel driver. Intel also implements it in DPDK as a

user space PMD.

NFV Reference Design For A Containerized vEPC Application

Solution Summary 11

Intel Confidential – Shared Under NDA (Is this needed?)

Figure 2 : Virtio Network Device Communication

The overview of virtio-user implementation in DPDK.

Figure 3 : Virtio Network Device in User Space

NFV Reference Design For A Containerized vEPC Application

Solution Summary 12

Intel Confidential – Shared Under NDA

For different virtio PCI devices we usually use as a para-virtualization I/O in the

context of QEMU/VM. The basic idea here is to present a kind of virtual set of

devices, which can be attached and initialized by DPDK. The device emulation layer

by QEMU in VM‟s context is saved by just registering a new kind of virtual device in

DPDK‟s Ethernet layer. To simplify configuration, we reuse the already-existing

virtio PMD code (driver/net/virtio).

Sample usage

- Start a testpmd on the host with a vhost-user port.

$(testpmd) -l 0-1 -n 4 --socket-mem 1024,1024 \

 --vdev 'eth_vhost0,iface=/tmp/sock0' \

 --file-prefix=host --no-pci -- -i

- Start a container instance with a virtio-user port.

$ docker run -i -t -v /tmp/sock0:/var/run/usvhost \

 -v /dev/hugepages:/dev/hugepages \

 dpdk-app-testpmd testpmd -l 6-7 -n 4 -m 1024 --no-pci \

 --vdev=virtio_user0,path=/var/run/usvhost \

 --file-prefix=container \

 -- -i --txqflags=0xf00 --disable-hw-vlan

2.2 Multus CNI Plugin

Basic introduction

 Multus is the Latin word for “Multi”.

 As the name suggests, it acts as the Multi plugin in Kubernetes and provides the Multi interface

support in a pod.

 It is compatible with other plugins like calico, weave and flannel, with different IPAM and

networks.

 It is a contact between the container runtime and other plugins, it doesn't have any of its own net

configuration and it calls other plugins like flannel/calico to do the real net conf job.

 Multus reuses the concept of invoking the delegates in flannel, it groups the multi plugins into

delegates and invokes each other in sequential order, according to the JSON scheme in the CNI

configuration.

 The number of plugins supported is dependent upon the number of delegates in the conf file.

 The Master plugin invokes "eth0" interface in the pod, the rest of plugins (Minion plugins e.g.:

sriov,ipam) invoke interfaces as "net0", "net1".. "netn".

 The "masterplugin" is the only net conf option of the Multus CNI; it identifies the primary network.

The default route will point to the primary network.

NFV Reference Design For A Containerized vEPC Application

Solution Summary 13

Intel Confidential – Shared Under NDA (Is this needed?)

Figure 4 : Multi-Homed Pod

Figure 5 : Multus Network Workflow in Kubernetes

Network Configuration Reference

 name (string, required): the name of the network

 type (string, required): "multus"

 delegates (([]map,required): number of delegate details in the Multus

 masterplugin (bool,required): master plugin to report back the IP address and DNS to the

container

Usage

tee /etc/cni/net.d/multus-cni.conf <<-'EOF'

{

 "name": "multus-demo-network",

 "type": "multus",

 "delegates": [

NFV Reference Design For A Containerized vEPC Application

Solution Summary 14

Intel Confidential – Shared Under NDA

 {

 "type": "sriov",

 #part of sriov plugin conf

 "if0": "enp12s0f0",

 "ipam": {

 "type": "host-local",

 "subnet": "10.56.217.0/24",

 "rangeStart": "10.56.217.131",

 "rangeEnd": "10.56.217.190",

 "routes": [

 { "dst": "0.0.0.0/0" }

],

 "gateway": "10.56.217.1"

 }

 },

 {

 "type": "ptp",

 "ipam": {

 "type": "host-local",

 "subnet": "10.168.1.0/24",

 "rangeStart": "10.168.1.11",

 "rangeEnd": "10.168.1.20",

 "routes": [

 { "dst": "0.0.0.0/0" }

],

 "gateway": "10.168.1.1"

 }

 },

 {

 "type": "flannel",

 "masterplugin": true,

 "delegate": {

 "isDefaultGateway": true

 }

 }

]

}

EOF

Testing the Multus CNI with Kubernetes

 Kubelet must be configured to run with the CNI --network-plugin, with the following

configuration information. Edit /etc/default/kubelet file and add KUBELET_OPTS:

KUBELET_OPTS="...

--network-plugin-dir=/etc/cni/net.d

--network-plugin=cni

"

 Restart the kubelet

NFV Reference Design For A Containerized vEPC Application

Solution Summary 15

Intel Confidential – Shared Under NDA (Is this needed?)

systemctl restart kubelet.service

Launching workloads in Kubernetes

 Launching the workload using yaml file in the Kubernetes master, with above configuration in the

Multus CNI, each pod should have multiple interfaces.

Note: To verify whether Multus CNI plugin is working fine, create a pod containing one “busybox”

container and execute “ip link” command to check if interfaces management follows configuration.

 Create “multus-test.yaml” file containing in the configuration below. Created pod will consist of

one “busybox” container running “top” command.

apiVersion: v1

kind: Pod

metadata:

 name: multus-test

spec: # specification of the pod's contents

 restartPolicy: Never

 containers:

 - name: test1

 image: "busybox"

 command: ["top"]

 stdin: true

 tty: true

 Create pod using command:

kubectl create -f multus-test.yaml

pod "multus-test" created

 Run “ip link” command inside the container:

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue qlen 1

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

3: eth0@if41: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1500 qdisc noqueue

 link/ether 26:52:6b:d8:44:2d brd ff:ff:ff:ff:ff:ff

20: net0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq qlen 1000

 link/ether f6:fb:21:4f:1d:63 brd ff:ff:ff:ff:ff:ff

21: net1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq qlen 1000

link/ether 76:13:b1:60:00:00 brd ff:ff:ff:ff:ff:ff

Table 1. Multus interface table.

Interface name
Description

lo
loopback

eth0@if41
Flannel network tap interface

net0 VF assigned to the container by SR_IOV

https://github.com/Intel-Corp/sriov-cni

NFV Reference Design For A Containerized vEPC Application

Solution Summary 16

Intel Confidential – Shared Under NDA

CNI plugin

net1 VF assigned to the container by SR_IOV

CNI plugin

Of Note

 Multus CNI is a short term solution for Kubernetes to support multiple networks.

 For the long term solution for Multiple Network support in Kubernetes, Intel is

working along with the Kubernetes Network Special Interest Group. Intel is actively

involved with other stakeholders in the community for this proposal.

 Kubernetes Multiple Network proposal link;

https://docs.google.com/document/d/1TW3P4c8auWwYy-

w_5afIPDcGNLK3LZf0m14943eVfVg/edit?ts=58877ea7

Intel Multiple Network use case:

https://docs.google.com/presentation/d/1yYIzwymWBhCf-FW-

qVSqf1692g649y3hHEl39-mC5Tk/edit#slide=id.g1ee67508b9_2_0

2.3 SR-IOV CNI Plugin

SR-IOV is a specification that leverage a PCIe device to appear to be multiple distinct physical PCIe

devices. SR-IOV introduces the idea of physical functions (PFs) and virtual functions (VFs). Physical

function (PFs) are fully-featured PCIe functions, while virtual functions are lightweight PCIe function. Each

VF can be assigned to one container, and configured with separate MAC, VLAN and IP, etc. The SR-IOV

CNI plugin enables the K8s pods to attach to an SR-IOV VF. The plugin looks for the first

available VF on the designated port in the Multus configuration file. The plugin also

supports the Data Plane Development Kit (DPDK) driver i.e. vfio-pci for these VFs, which

can provide high performance networking interfaces to the K8s pods for data plane

acceleration in containerized VNF. Otherwise, the driver of these VFs should be „i40evf‟ in

kernel space.

Enable SR-IOV

 Given Intel ixgbe NIC on CentOS, Fedora or RHEL

vi /etc/modprobe.conf

options ixgbe max_vfs=8,8

Network configuration reference

 name (string, required): the name of the network

https://github.com/Intel-Corp/sriov-cni
https://github.com/Intel-Corp/sriov-cni
https://docs.google.com/document/d/1TW3P4c8auWwYy-w_5afIPDcGNLK3LZf0m14943eVfVg/edit?ts=58877ea7
https://docs.google.com/document/d/1TW3P4c8auWwYy-w_5afIPDcGNLK3LZf0m14943eVfVg/edit?ts=58877ea7
https://docs.google.com/presentation/d/1yYIzwymWBhCf-FW-qVSqf1692g649y3hHEl39-mC5Tk/edit#slide=id.g1ee67508b9_2_0
https://docs.google.com/presentation/d/1yYIzwymWBhCf-FW-qVSqf1692g649y3hHEl39-mC5Tk/edit#slide=id.g1ee67508b9_2_0
http://blog.scottlowe.org/2009/12/02/what-is-sr-iov/

NFV Reference Design For A Containerized vEPC Application

Solution Summary 17

Intel Confidential – Shared Under NDA (Is this needed?)

 type (string, required): "sriov"

 master (string, required): name of the PF

 ipam (dictionary, required): IPAM configuration to be used for this network.(kernel

mode)

 dpdk (dictionary required only in userspace)

o kernel_driver (string, required): name of the NIC driver e.g i40evf

o dpdk_driver (string, required): name of the DPDK driver e.g. vfio-pci

o dpdk_tool (string, required): absolute path of dpdk bind script e.g. dpdk-

devbind.py

Extra arguments

 vf (int, optional): VF index, default value is 0

 vlan (int, optional): VLAN ID for VF device

Usage in kernel mode using IPAM

cat > /etc/cni/net.d/10-mynet.conf <<EOF

{

 "name": "mynet",

 "type": "sriov",

 "master": "eth1",

 "ipam": {

 "type": "fixipam",

 "subnet": "10.55.206.0/26",

 "routes": [

 { "dst": "0.0.0.0/0" }

],

 "gateway": "10.55.206.1"

 }

}

EOF

Add container to network

CNI_PATH=`pwd`/bin

cd scripts

CNI_PATH=$CNI_PATH

CNI_ARGS="IgnoreUnknown=1;IP=10.55.206.46;VF=1;MAC=66:d8:02:77:aa:aa" ./priv-

net-run.sh ifconfig

contid=148e21a85bcc7aaf

netnspath=/var/run/netns/148e21a85bcc7aaf

NFV Reference Design For A Containerized vEPC Application

Solution Summary 18

Intel Confidential – Shared Under NDA

eth0 Link encap:Ethernet HWaddr 66:D8:02:77:AA:AA

 inet addr:10.55.206.46 Bcast:0.0.0.0 Mask:255.255.255.192

 inet6 addr: fe80::64d8:2ff:fe77:aaaa/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:7 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:0 (0.0 b) TX bytes:558 (558.0 b)

lo Link encap:Local Loopback

 inet addr:127.0.0.1 Mask:255.0.0.0

 inet6 addr: ::1/128 Scope:Host

 UP LOOPBACK RUNNING MTU:65536 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

Remove container from network:

CNI_PATH=$CNI_PATH ./exec-plugins.sh del $contid /var/run/netns/$contid

For example:

CNI_PATH=$CNI_PATH ./exec-plugins.sh del 148e21a85bcc7aaf

/var/run/netns/148e21a85bcc7aaf

The diagram below shows a pod with 3 interfaces and includes Multus, Flannel and SR-IOV

CNI plugins working together.

D
o

ck
er

 c
o

n
ta

in
er

s

et
h

0

south0 north0

Kubernetes

CNI

Multus CNI Plugin

Flannel
Plugin

Flannel linux
bridge

Fl
an

ne
l l

in
ux

b

ri
d

ge

 SR-IOV
Plugin

south0

SR-IOV
Plugin

north0

pod

VFVF VF

eth0

e
n

o
1

ens2f0 ens2f1
Intel® X710 – DA4

In
te

l ®
 I

3
5

0
–

 T
41

 G
b

E
P

o
rt

s

10 GbE SFP+
Ports

VF

NFV Reference Design For A Containerized vEPC Application

Solution Summary 19

Intel Confidential – Shared Under NDA (Is this needed?)

Figure 6 : Flannel and SR-IOV Plugins

 Flannel interface - is the „masterplugin‟ as default gateway associated with the

„eth0‟ in a K8s pod.

 SR-IOV VF Interface using kernel driver - this VF is instantiated from the host

machine‟s physical port „ens2f0‟, the first port on the Intel® X710-DA4 NIC. This

interface name inside pod is „south0‟, and it can be assigned an IP address using

IPAM.

 SR-IOV VF interface using DPDK driver - VF is instantiated from the host machine‟s

physical port „ens2f1‟, which is the second port on the Intel® X710-DA4 NIC. This

interface name inside pod is „north0‟.

2.4 Node Feature Discovery (NFD)

Node Feature Discovery (NFD) is a Kubernetes project that is part of Kubernetes Incubator.

NFD detects hardware features available on each node in a Kubernetes cluster, and

advertises those features using node labels. Feature discovery is done as a one-shot job. The

node feature discovery script launches a job which deploys a single pod on each unlabeled

node in the cluster. When each pods run, it contacts the Kubernetes API server to add

labels to the node.

The current set of feature sources are the following.

 CPUID for x86 CPU details

 Intel Resource Director Technology (RDT)

 Intel P-State driver

 Network (SRIOV VF detection on Minion node)

NFD will label/tag on each node. The published node labels encode a few pieces of information. User can

get these information from below command line

kubectl get nodes -o json | jq .items[].metadata.labels

{

 "node.alpha.kubernetes-incubator.io/node-feature-discovery.version":

"v0.1.0",

 "node.alpha.kubernetes-incubator.io/nfd-cpuid-<feature-name>": "true",

 "node.alpha.kubernetes-incubator.io/nfd-rdt-<feature-name>": "true",

 "node.alpha.kubernetes-incubator.io/nfd-pstate-<feature-name>":

"true",

 "node.alpha.kubernetes-incubator.io/nfd-network-<feature-name>":

"true"

NFV Reference Design For A Containerized vEPC Application

Solution Summary 20

Intel Confidential – Shared Under NDA

}

Note: only features that are available on a given node are labeled, so the only label value published for

features is the string "true".

 CPUID Features (Partial List)

Feature name Description

ADX
Multi-Precision Add-Carry Instruction Extensions (ADX)

AESNI
Advanced Encryption Standard (AES) New Instructions (AES-NI)

AVX
Advanced Vector Extensions (AVX)

AVX2
Advanced Vector Extensions 2 (AVX2)

BMI1
Bit Manipulation Instruction Set 1 (BMI)

BMI2
Bit Manipulation Instruction Set 2 (BMI2)

SSE4.1
Streaming SIMD Extensions 4.1 (SSE4.1)

SSE4.2
Streaming SIMD Extensions 4.2 (SSE4.2)

SGX
Software Guard Extensions (SGX)

 Intel Resource Director Technology (RDT) Features

Feature name Description

RDTMON
Intel Cache Monitoring Technology (CMT) and Intel Memory Bandwidth

Monitoring (MBM)

RDTL3CA
Intel L3 Cache Allocation Technology

RDTL2CA
Intel L2 Cache Allocation Technology

 P-State

Feature name Description

TURBO
Power enhancement on Host machine

 Network Features

Feature name Description

SRIOV
Single Root Input/Output Virtualization (SR-IOV) enabled Network

Interface Card

Note: There is an example script in this repo, https://github.com/Intel-Corp/node-feature-

discovery.git, that demonstrates how to deploy a job that runs NFD containers on each of

the nodes, which discover hardware capabilities on the nodes they‟re running and

assign proper label to the nodes accordingly.

./label-nodes.sh

Targeting Nodes with Specific Features - Nodes with specific features can be targeted using

the nodeSelector field.

{

http://www.intel.com/content/www/us/en/pci-express/pci-sig-sr-iov-primer-sr-iov-technology-paper.html
https://github.com/Intel-Corp/node-feature-discovery.git
https://github.com/Intel-Corp/node-feature-discovery.git

NFV Reference Design For A Containerized vEPC Application

Solution Summary 21

Intel Confidential – Shared Under NDA (Is this needed?)

 "apiVersion": "v1",

 "kind": "Pod",

 "metadata": {

 "labels": {

 "env": "test"

 },

 "name": "golang-test"

 },

 "spec": {

 "containers": [

 {

 "image": "golang",

 "name": "go1",

 }

],

 "nodeSelector": {

 "node.alpha.kubernetes-incubator.io/nfd-pstate-turbo":

"true"

 }

 }

}

NFV Reference Design For A Containerized vEPC Application

Solution Summary 22

Intel Confidential – Shared Under NDA

3.0 ZTE Cloud Native vEPC

3.1 ZTE Core Network NFV Solution Overview

ZTE‟s cloud native NFV solution enables operators to face industry differentiated

competition, via a low cost and rapid response solution to customer needs, in order to

thrive within an environment of fierce market competition.

ZTE‟s cloud native NFV solution is a containerized micro-service architecture. The micro-

service architecture decouples the network service into a group of micro services that can

be deployed and distributed independently. The network service can be completed based on

the corresponding micro services, which provides a reliable basis for fast delivery of the

service. New service can reuse micro-service components for rapid development and release.

The containerized micro-service architecture makes the service very easy to be packaged,

published and run anywhere, which can enable the service to quickly start and stop and

easily perform horizontal expansion and failure recovery. The containerization of the service

also provides a good environment for DevOps. The ZTE cloud native NFV solution supports

automation of service development and deployment through continuous integration and

self-healing systems, improving operational efficiency and reducing operational costs.

NFV Reference Design For A Containerized vEPC Application

Solution Summary 23

Intel Confidential – Shared Under NDA (Is this needed?)

Figure 7 : ZTE NFV Solution Overview

The ZTE cloud native NFV solution is expanded on the basis of the ETSI NFV architecture.

ZTE‟s cloud native VNF is independent to the NFVI platform including the aforementioned

Kubernetes and OpenStack NFVI platform.

3.2 ZTE Cloud Native vEPC Solution

The cloud native vEPC solution is an independent micro-service such as a CDB, load

balancer, etc. The Micro-service external interface is designed as IP-reachable lightweight

API interface. Every micro service is designed to be stateless, and the information, such as

status information, is stored in an independent CDB.

Mobility
managemen

t

Load
balancingCDB

Codec

Signaling
protocol

IP
route

Common
Service

Service
Logic

Domain DC

Access
security

Session
management

Message
processing

DPI…

…

API

Central DCEdge DC

Figure 8 : Cloud Native vEPC Architecture

The cloud native vEPC solution can quickly achieve the desired product characteristics for

each scene based on the target scenario. For example: according to the traditional core

NFV Reference Design For A Containerized vEPC Application

Solution Summary 24

Intel Confidential – Shared Under NDA

network scenarios, and enterprise network scenarios, the corresponding EPC can be quickly

developed.

Distributed
Deployment

edge DC domain DC central DC

MM

CDN

SCTP

SM

DPILB UP

FWCDB

Customized Service

Atomic Function

Cloud Native vEPC
MBB vEPC

Enterprise vEPC

MM
...

...

Sigtran

VPN

design verification deployment

Micro service DevOps

SM UP

SCTP

Sigtran DPI

FW

...

MM SM UP

SCTP

Sigtran VPN

FW

...

Figure 9 : Cloud Native vEPC Scenarios

NFV Reference Design For A Containerized vEPC Application

Solution Summary 25

Intel Confidential – Shared Under NDA (Is this needed?)

4.0 User Scenario and Demonstration

Three scenarios have been created for the purpose of evaluating the ZTE cloud native vEPC

solution‟s functionality based on Intel container platform:

1. A vEPC deployment and basic function scenario.

2. A vEPC scale in/out scenario.

3. A vEPC self-healing scenario.

ZTE vEPC cloud native solution include two parts, one is vManager which is the application

life cycle manager, and the other is the vEPC application. This section will show how to

setup the vManager and a step by step guide on how to replicate the different scenarios

above.

4.1 vManager Deployment Guide

Follow the steps below to setup the vManager's yaml file and then create and run

vManager.

 Install the host operating system, Docker engine and other related software.

 Get the vManager software image from the ZTE software center, then upload it to the

Kubernetes master node‟s /home/version/zte directory.

 Put the image into the Docker Registry:

docker tag vmanager masternode:5000/vmanager

docker push masternode:5000/vmanager

 Edit the vmanager.yaml file.

apiVersion: v1

kind: Service

metadata:

 name: vmanagersvc

 labels:

 app: vmanager

spec:

 type: NodePort

 ports:

 - port: 8080

 targetPort: 80

 protocol: TCP

 name: http

 selector:

NFV Reference Design For A Containerized vEPC Application

Solution Summary 26

Intel Confidential – Shared Under NDA

 app: vmanager

apiVersion: v1

kind: ReplicationController

metadata:

 name: vmanager

spec:

 replicas: 1

 template:

 metadata:

 labels:

 app: vmanager

 spec:

 containers:

 - name: vmanager

 image: masternode:5000/vmanager

 ports:

 - containerPort: 80

 Run the create command, and vmanager will launch.

$ kubectl create -f ./vmanager.yaml

$ kubectl get pods|grep vmanager

NAME READY STATUS RESTARTS AGE

vmanager 1/1 Running 0 2m

4.2 vEPC Deployment Scenario

In this scenario, we will show the deployment of the vEPC application and the basic

function of the vEPC application. All the deployment of the vEPC will be done on the

vManager's webpage, making it very easy and convenient for the user.

Then, we show a video download test case for the vEPC. We prepared a video server, a

video client and a simulate eNodeB proxy first. After the vEPC is deployed, we import the

prepared service configuration file for the vEPC, then the video client will connect to the

video server through the simulate eNodeB proxy.

The steps to deploy vEPC application are as follows:

 On the ZTE vManager Project image repository page, upload the vEPC image files of

App as initial version 1.

NFV Reference Design For A Containerized vEPC Application

Solution Summary 27

Intel Confidential – Shared Under NDA (Is this needed?)

 Figure 10 : App Image in Software Warehouse

 Upload the vEPC blueprint file using the vManager Blueprint center.

Figure 11 : App Blueprint in Blue Print Center

 Deploy the imported vEPC blueprint, and wait for about 30 seconds. The vEPC app

will be deployed successfully.

Figure 12 : App Deployed Successfully

NFV Reference Design For A Containerized vEPC Application

Solution Summary 28

Intel Confidential – Shared Under NDA

The steps to configure and test the vEPC network are as follows:

 To configure vEPC‟s apn/service ip/ip pool/route information, connect to vEPC‟s CLI

windows, and import the prepared vEPC service configuration file.

 The UE of a simulated eNodeB proxy connects to vEPC network normally.

 The video server is deployed to the vEPC‟s PDN network.

 Video client through the simulated eNodeB proxy connects to the video server and

plays the video.

Benefit shown using the containerization and micro service architecture:

The entire process, from deployment of the vEPC application to the video client playing

video files normally, can be completed within 2 minutes.

Figure 13 : vEPC Workflow

4.3 vEPC Scaled Scenario

In this scenario, we will see that the vEPC can scale in/out automatically according to

vEPC PDP usage.

When the PDP usage ratio exceeds the scale-out threshold, the platform will create a new

vEPC instance, and the new instance automatically joins the corresponding service cluster.

When the PDP usage ratio is less than the scale-in threshold, the platform will delete a

vEPC instance.

Benefit from the containerization, micro-service and stateless service architecture:

The vEPC network can scale in/out very quickly and no impact to the online sessions.

The steps of scale-out scenario are as follows:

 The maximum number of vEPC instance is set to 3, and the minimum number is set to

1.

NFV Reference Design For A Containerized vEPC Application

Solution Summary 29

Intel Confidential – Shared Under NDA (Is this needed?)

 Configure the vEPC scale in/out policy, scale out:PDP usage ratio exceeds 80%, scale in:

PDP use ratio is below 20%.

 The simulated eNodeB initiates simu-user sessions connection.

 When online PDP usage ratio exceeds 80%, the container platform creates a new vEPC

instance.

 The new vEPC instance will automatically join the corresponding service cluster, and in

this scale process, online video playback will not be affected.

The scale-in scenario steps as follows:

 The vEPC instance current number is 2, the maximum number of vEPC instance is set

to 3 and the minimum number is set to 1.

 Configure the vEPC scale in/out policy, scale out:PDP usage ratio exceeds 80%, scale in:

PDP use ratio is below 20%.

 The simulated eNodeB cancels initiated simu-user sessions.

 When online PDP usage ratio falls below 80%, the container platform will delete a

vEPC instance.

 The vEPC service will re-load sharing, and in this sacle process, online video playback

will not be affected.

4.4 Service Instance Redundancy Scenario

When one instance of vEPC service is abnormal or deleted, the Container platform will actively start a

new service instance. The new service instance will automatically join the corresponding service cluster,

in which the load balance service will distribute the user session to this service instance.

Benefit from stateless service architecture:

The failure of service instances does not have the impact on the session continuity of the vEPC.

The steps of this scenario steps are as follows:

 The platform expected vEPC instance number is set to 2.

 Through docker stop command, stop one vEPC instance.

 Container platform will start a new vEPC instance successfully, and in this scale

process, online video playback will not be affected.

NFV Reference Design For A Containerized vEPC Application

Solution Summary 30

Intel Confidential – Shared Under NDA

5.0 Ingredients

Table 2. Hardware Bill of Materials

Hardware Component Specification

Kubernetes Master

and Minion

Industry Server

Based on IA

Processor 2x Intel® Xeon® processor E5-2690 v3, 2.60 GHz, total of 48

logical cores with Intel® Hyper-Threading Technology

Memory 128 GB, DDR4-2133 RAM

Intel® NIC,

1GbE

Intel® Ethernet Server Adapter I350-T4 (using Intel® Ethernet

Controller I350)

Intel® 10GbE Intel® Ethernet Converged Network Adapter X710-DA4 (using

Intel® Ethernet Controller XL710-AM1

Hard Drive SATA 8 TB HDD

Top-of-rack

switch

10GbE Switch Extreme Networks Summit* X670V-48t-BF-AC 10GbE Switch,

SFP+ Connections

1GbE Switch Cisco catalyst 2960 Series

Table 3. Software Versions

Functionality Product and Version

Kubernetes 1.5.2

Docker 1.13.1

DPDK 17.02

Multus CNI

Plugin

https://github.com/Intel-Corp/multus-cni

SR-IOV CNI

Plugin

https://github.com/Intel-Corp/sriov-cni

Node Feature

Discovery (NFD)

https://github.com/Intel-Corp/node-feature-discovery

vEPC ZXUN vEPC V6.17.10B5

https://ark.intel.com/products/81713/Intel-Xeon-Processor-E5-2690-v3-30M-Cache-2_60-GHz
https://ark.intel.com/products/84805/Intel-Ethernet-Server-Adapter-I350-T4V2?q=Intel%C2%AE%20Ethernet%20Server%20Adapter%20I350-T4
https://ark.intel.com/products/84805/Intel-Ethernet-Server-Adapter-I350-T4V2?q=Intel%C2%AE%20Ethernet%20Server%20Adapter%20I350-T4
https://ark.intel.com/products/83965/Intel-Ethernet-Converged-Network-Adapter-X710-DA4?q=Intel%C2%AE%20Ethernet%20Converged%20Network%20Adapter%20X710-DA4
https://ark.intel.com/products/83965/Intel-Ethernet-Converged-Network-Adapter-X710-DA4?q=Intel%C2%AE%20Ethernet%20Converged%20Network%20Adapter%20X710-DA4

NFV Reference Design For A Containerized vEPC Application

Solution Summary 31

Intel Confidential – Shared Under NDA (Is this needed?)

Server Server2960

Switch

Kubenetes

Platform
Master Node Node Node Node Node

PODs
vManger vEPC-VR vEPC-RM vEPC-CDB ...vEPC-LB

Test

Instrument

Test PC

Test Load

Simulated
eNodeB

NetManager

NetAPI

Media

Control

Demo Environment

ServerServer

 Figure 14 : vEPC Demo Topology

Demo topology networks:

Name Attribute

1
NetManager Traffic of kubernetes network mangager

2
NetAPI Traffic of Kubernetes API

3
Media Media traffic with POD

4 Control Control traffic with POD

Demo topology components:

Name Attribute

1 Master Master of kubernetes

2 Simulated eNodeB Simulated eNodeB for test

3 Test PC PC for Test

4 Node Node of kubernetes

NFV Reference Design For A Containerized vEPC Application

Solution Summary 32

Intel Confidential – Shared Under NDA

5 Test Load Test Simulator for vEPC

6.0 References

Title Link

1 Docker https://www.docker.com/what-docker

2 Kubernetes Overview
https://kubernetes.io/docs/concepts/overview/what-is-

kubernetes/

3 Kubernetes pod Overview
https://kubernetes.io/docs/concepts/workloads/pods/pod-

overview/

4 Use cases for Kubernetes https://thenewstack.io/dls/ebooks/TheNewStack_UseCasesForK

ubernetes.pdf

5 Kubernetes Components https://kubernetes.io/docs/concepts/overview/components/

6 Kube Proxy https://kubernetes.io/docs/admin/kube-proxy/

7 Kubernetes API Server https://kubernetes.io/docs/admin/kube-apiserver/

8 Kubernetes Labels
https://kubernetes.io/docs/concepts/overview/working-with-

objects/labels/

9 CNI Github Repository https://github.com/containernetworking/cni

10 Flannel Github Repository https://github.com/coreos/flannel

11 SR-IOV for NFV Solutions
http://www.intel.com/content/dam/www/public/us/en/docu

ments/technology-briefs/sr-iov-nfv-tech-brief.pdf

12 SR-IOV CNI Plugin https://github.com/Intel-Corp/sriov-cni

13 Multus CNI Plugin https://github.com/Intel-Corp/multus-cni

14 Node Feature Discovery https://github.com/Intel-Corp/node-feature-discovery

15 Containers vs Virtual

Machines

https://docs.docker.com/get-started/#containers-vs-virtual-

machines#containers-vs-virtual-machines

16

Enhanced Platform

Awareness – Intel EPA

Enablement Guide

https://builders.intel.com/docs/networkbuilders/EPA_Enableme

nt_Guide_V2.pdf

https://www.docker.com/what-docker
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/
https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/
https://thenewstack.io/dls/ebooks/TheNewStack_UseCasesForKubernetes.pdf
https://thenewstack.io/dls/ebooks/TheNewStack_UseCasesForKubernetes.pdf
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/admin/kube-apiserver/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://github.com/containernetworking/cni
https://github.com/coreos/flannel
http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/sr-iov-nfv-tech-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/sr-iov-nfv-tech-brief.pdf
https://github.com/Intel-Corp/sriov-cni
https://github.com/Intel-Corp/multus-cni
https://github.com/Intel-Corp/node-feature-discovery
https://docs.docker.com/get-started/#containers-vs-virtual-machines
https://docs.docker.com/get-started/#containers-vs-virtual-machines
https://builders.intel.com/docs/networkbuilders/EPA_Enablement_Guide_V2.pdf
https://builders.intel.com/docs/networkbuilders/EPA_Enablement_Guide_V2.pdf

NFV Reference Design For A Containerized vEPC Application

Solution Summary 33

Intel Confidential – Shared Under NDA (Is this needed?)

17 OpenStack EPA https://wiki.openstack.org/wiki/Enhanced-platform-

awareness-pcie

7.0 Acronyms

Acronym Expansion

AES Advanced Encryption Standard

AES-NI Advanced Encryption Standard New Instructions

CNI Container Networking Interface

COTS Commercial off the shelf

CSP Communication Service Provider

DPDK Data Plane Development Kit

HA High Availability

HT Hyper-Thread

IP Internet Protocol

IPAM IP Address Management

K8s Kubernetes

NFD Node Feature Discovery

NFV Network Function Virtualization

NFVI Network Function Virtualization Infrastructure

NIC Network Interface Card

NUMA Non Uniform Memory Access

OIR Opaque Integer Resource

https://wiki.openstack.org/wiki/Enhanced-platform-awareness-pcie
https://wiki.openstack.org/wiki/Enhanced-platform-awareness-pcie

NFV Reference Design For A Containerized vEPC Application

Solution Summary 34

Intel Confidential – Shared Under NDA

OS Operating System

PCI Peripheral Component Interconnect

PID Process ID

PMD Poll Mode Driver

RDT Resource Director Technology

SR-IOV Single Root I/O Virtualization

VF Virtual Function

VM Virtual Machine

VNF Virtual Network Function

VxLAN Virtual Extensible Local Area Network

TCP Transport Control Protocol

UDP User Datagram Protocol

