

弹性智能 领航云网络

---- ZENIC vDC 控制器

ZENIC vDC 控制器

—— 弹性智能 领航云网络

SDN 作为一种转发控制分离、集中管控、开放可编程的网络体系架构,目前在数据中心网络中已经成为主流趋势。ZENIC vDC 控制器是中兴通讯推出的一款电信级的集群控制器产品,聚焦云数据中心的 SDN 需求,定位于私有云、公有云、NFVI 和混合云的应用场景,结合业务编排器和云平台,提供电信级 vDC 网络的端到端 SDN 解决方案。

ZENIC vDC 控制器支持分布式控制器集群,系统形态: 2+N 集群,由两个主控控制器节点和 N(1-128)个业务控制器节点组成。主控控制器节点采用主备模式提供可靠性,南向接口分布在业务控制器上实现。

ZENIC vDC 控制器基本功能如下表:

架构级特性	基于动态库的组件动态加载卸载
	支持分布式控制器,最大支持128个控制器节点
	完全开放 API,可以采用 C++/Java 以及 RESTful 接口进行编程
	支持 ODL 兼容的 Java 编程接口
内核&应用	交换机接入及拓扑计算,支持 ECMP
	地址学习,ARP/ND 代答支持队列、Meter 等 QoS 功能
	支持 Overlay 和非 Overlay 组网模式
	基本转发决策功能
	内置 DHCP 服务
	内置 ACL、流量工程应用
	VPC 应用,支持虚机迁移
	DCI 互联应用
操作维护	基于 Web 的网管界面
	支持 MML 配置参数
	支持拓扑、流量的可视化

支持失败观察、告警、端到端流量诊断等网管功能

客户价值

租户业务快速部署

管理运维简化

海量策略动态调整

业务上线时间:周—>小时 故障定位时间:小时—>分钟 系统集成时间:月—>周

关键特性

组件模块化设计

完全的组件化设计,系统以功能模块为单位进行动态加载和卸载;可根据用户需要进行配置裁剪,无需修 改源代码;

南向驱动即插即用

可加载多个南向驱动模块,兼容不同类型的交换机的接入,允许不同交换机驱动的动态加载和卸载,实现即插即用;

TAPaaS 镜像自动化

提供基于开源的 TAAS-API接口,可以与异厂家对接;从编排器上按照 VNF 指定特定端口的特定流量采集规则,SDN 网络侧自动定位流量采集点和下发流量采集、分发策略;虚机在发生迁移,创建,删除,弹缩的时候,无需手动修改流量采集策略,SDN 网络自动调整策略适配;可以基于五元组选择性采集流量,并按照实际需要,将不同特征的流量可以分别送往不同的目的接收设备。

高可靠、分布式集群

控制器集群由一对主控控制器以及 1-128 个业务控制器构成,节点动态扩展,主控控制器节点采用主备模式提供可靠性,南向接口分布在业务控制器上;所有配置数据、物理拓扑数据分发到所有业务节点,流表、主机状态、虚拟网络数据采用 DHT 进行分布化处理;转发面感知集群状态,基于 OF 1.3 的多控制器扩展,最大化保证业务访问不跨节点,降低分布式系统开销。

故障自发现和快速收敛

通过 LLDP 超时或交换机上报端口状态来发现链路故障并触发路径调整,反应时间为秒级;通过扩展 OF-Config 实现拓扑发现和 BFD 配置联动,扩展 OpenFlow 实现故障的快速发现更新,最终实现 100ms 级的故障收敛;网管提供报文构造工具,结合 OpenFlow 采用逐跳报文收发,快速诊断故障出现的节点。

中兴 "Openflow+" 控制面

控制器完全离线后转发表保持;ARP 和 ICMP 协议卸载到转发面,降低控制器的开销;Underlay 和 Overlay 完全分离;控制器不参与 underlay 网络的故障收敛;不同类型的 SDN 交换机有不同的 TTP 模型,每个流表均映射到多级 ASIC 流水线。

全硬件 EVPN 控制面

云网分离:物理网络的控制和虚拟网络分离,网络侧方案非常简单,网络部门推进网络自动化配置,利于稳定;SDN 只控制硬件交换机,无需接管 vSwitch,也不需要在服务器上安装任何软件;计算虚拟化由云部门负责, OpenStack 云平台自己负责 VM 级策略和迁移策略跟随。

动态分布式路由

全局统一的控制面—基于 SDN 控制器,提供全局统一的管理、控制平面。所有业务板关键表项同步—采用全局统一的控制器 MAC 进行网关 ARP 应答,并通过控制器保障路由、ARP 等表项全局同步。优化流量路径—同交换机转发,流量在交换机内部完成;跨交换机转发,流量通过 VxLAN Fabric 网络完成。

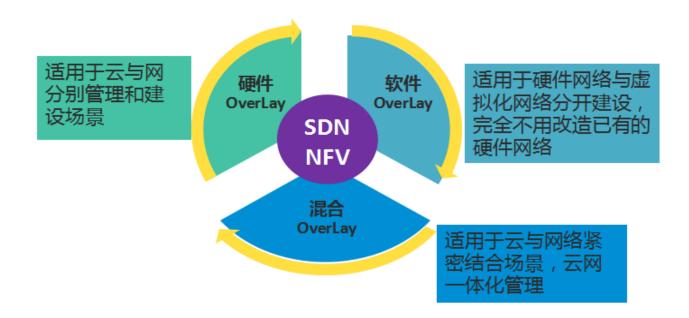
集成 VMware 资源池

vSwitch 作为 VTEP:在每个 ESXi 上部署一个 DVS,本节点流量经过 DVS 再送至 SDN 网络。每个 VM 都分配一个独立的 VLAN,只和 DVS 通信; DVS 接管外部网卡。

TOR 作为 VTEP: ESXI 下发策略设置旁路使 VSS VM 连接到 5960 交换机,使用 VLAN 来区分 VM 并且控制器下发流表使旁路工作。与在 VM 中驻留 vSwitch 的纯软件方案相比这种方案性能更佳。

业务链动态插入

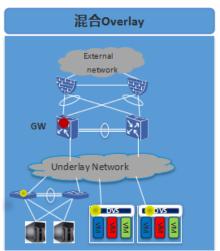
通过采用 Traffic Steering, 实现业务链 L4-L7 Service 的动态插入和业务组合,可在网络中动态增加防火墙、IDS/IPS、Cache等透明网络业务实体,而且可以调整多种 L4-L7 Service 的执行顺序,以解决业务冲突和依赖关系。

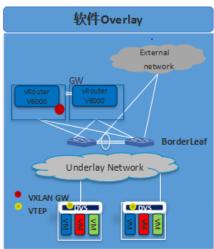

安全组策略控制

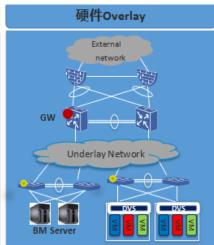
东西向安全:微分段,基于 Connection track 的有状态安全组;跨租户、跨路由器的流量采用东西向防火墙隔离。

南北向安全:南北向层面,每个虚拟路由器绑定一个虚拟防火墙;外部路由器连接至防火墙,NAT 也由防火墙实现。

应用场景


ZENIC vDC 控制器聚焦 vDC 场景,分为三种 VxLAN overlay 组网方案:

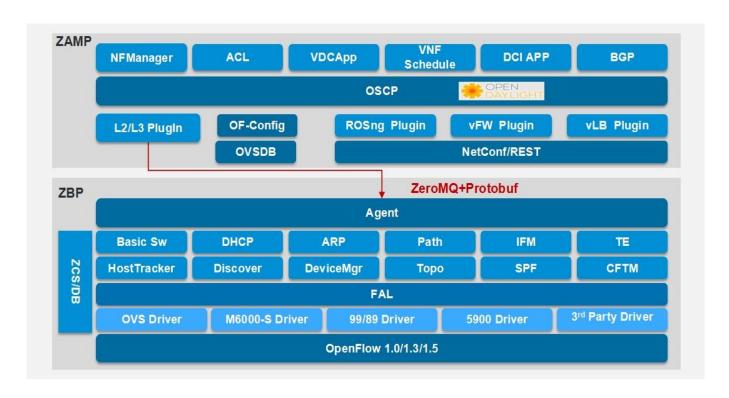



Overlay 组网模式的网络拓扑图:

混合 Overlay 场景: VTEP 既有 OVS/DVS,也有 5960 硬件交换机(用作裸金属服务器、SR-IOV 虚机接入),网关一般采用硬件设备实现;是 SDN 下最常见的组网方案,适用于所有场景,但是最为复杂。

软件 Overlay 场景:在仅仅有虚拟化、容器的场景下,VTEP、GW 均采用软件实现。适用于公有云场景,在公有云中需要支持海量的租户、复杂的微分段安全隔离需求、海量自服务租户带来单位时间内业务的频繁更新,硬件设备无法支持。

硬件 Overlay 场景: SDN 控制器仅控制硬件交换机; 当云内仅有裸金属服务器的情况,那么裸金属服务器的网络接口和硬件网络是——对应的关系;如果是虚拟化的场景,则在服务器侧还有 vSwitch, vSwitch 到 ToR 交换机采用 VLAN 组网,硬件交换机之间采用 VXLAN 组网,称之为层次化端口绑定。隧



道在 VTEP 设备之间、VTEP 和 GW 设备之间建立, DVS/OVS 的 VXLAN 控制面采用 OpenFlow 协议, 硬件交换机的 VXLAN 控制面采用 EVPN 协议; VNI、VRF、MAC 及路由转发受 SDN 控制器控制。对于防火墙、负载均衡器、IPSecVPN 等设备,由插件调用创建虚拟实例,并调用 ZENIC 控制器接口连通网络。

软件架构

ZENIC vDC 控制器模块化的软件架构如下图:

ZENIC vDC 控制器的软件结构主要分为两大部分:ZBP(基础包)和 ZAMP(管理应用包),各模块的具体说明如下:

名称		描述
ZBP	ZCS/DB	ZCS:集群管理功能模块,提供基于单跳 DHT 的集群控制、数据同步功能
		DB:内存数据库系统

5G 先锋

8	

名称		描述	
	Driver	交换机驱动,实现对不同硬件、不同协议的适配,包括 OVS 驱动、M-	
		6000 驱动、99/89 驱动、5900 驱动	
FAL 核心应用		转发抽象层,提供对设备、网络的统一抽象编程模型	
		提供网络基础核心功能,包括如下:	
		BasicSW:完成基本二层交换功能	
		DHCP:完成 DHCPRelay 和代答功能	
		ARP: 主机 ARP 地址和位置学习以及 ARP 请求代答	
		Path:路径管理,负责分解应用的转发决策请求到拓扑路径上,负责路径	
		切换	
		IFM:接口管理,管理物理接口,VLAN 子接口以及 L3interface	
TE:流量工程功能模块 Discover:负责主机发现功能		TE:流量工程功能模块	
		Discover: 负责主机发现功能	
		DeviceMgr: 南向驱动的即插即用管理,交换机资源及端口资源管理	
		Topo:物理拓扑管理,接收交换机上下线、链路探测事件,形成系统拓扑	
		SPF:最短路径计算模块	
		CFTM:集中流表管理	
	openflow	Openflow 协议栈	
	Agent java 域与 C 域之间对基本二层三层的功能的对接,提供		
		解封装	
	vDCApp	虚拟数据中心多租户应用,实现对于 OpenStack 接口的适配	
	DCIAPP	实现将分散的多个 DC 连接成可以统一服务的资源池,实现对于	
		OpenStack 接口的适配	
	ACL	实现策略路由表的配置、生成和下发	
	NFManager	网管系统,负责用户的界面操作和信息呈现等	
	BGP	实现 BGP 协议栈,从对端获取和向对端发布路由	
ZAMP	VNF Schedule	虚拟网络功能调度	
	OSCP	控制器内在 java 域的操作控制器平台	
	Plugin	插件功能,主要实现适配管理,包括如下:	
		L2/L3 plugin: java 域与 C 域之间对基本二层三层的功能的对接	
		Of-config/Netconf: 实现控制器对物理 OFS 的管理和配置	
		OVSDB: 实现控制器对虚拟 OFS 的管理和配置	
		RosNG plugin: 实现控制器对 ZTE 交换机平台 rosng 的管理和配置	

5 G 先锋

名称		描述
		vFW/vLB plugin:实现控制器对虚拟防火墙和负载均衡设备的管理和配置

技术规范

技术规范	规格项目	规格描述
	PC 服务器	系统要求: X86 系统, 推荐双路 14 核至强系统, E5-
		2680 及以上系统,磁盘空间 600GB 或以上
	内存	Tiny 模式,交换机数量 32 台,内存容量≥32G;
物理规格		Small 模式,交换机数量 64 台,内存容量≥64G
10×±1001A		Medium 模式,交换机数量 2048 台,内存容量≥256G
	CPU	Tiny 模式,≥4vCPU;
		Small 模式,≥8vCPU;
		Medium 模式,≥16vCPU
操作系统要	求	成研 CGSL,CentOS7.2
	最大控制器集群数量	128
	单个控制器最大接入交换机的数量	2048
	单个控制器流量下发速度(PPS)	80K
性能指标	单控制器流表容量	12M
	控制器响应性能	<2ms(报文上送触发流表下发速率)
	北向接口	RESTful/RESTCONF、通用北向接口
		vDC APP 应用接口 、DCI APP 应用接口
	东西向接口	路由协议接口、EVPN/MP-BGP接口
	南向接口	OpenFlow 1.0/1.3/1.5
外部接口 可靠性		NETCONF , SNMP , CLI
	<i>⋝幼</i> 司性结职友的时间 MTTC	RESTful/RESTCONF 99.999%
	系统可持续服务的时间 MTTF	
	虚拟机年宕机时间 MTBF (不包含	<5 分钟
	人为中断、系统升级时间)	

5 G 先锋

中兴通讯股份有限公司 ZTE CORPORATION

ZTE中兴 深圳市科技南路 55 号中兴通讯大厦

 网址: www.zte.com.cn
 电话: +86-755-26770000

邮编:5180057

传真:+86-755-26771999