智能运维,化繁为简,助力聚焦5G业务

发布时间:2019-12-31

网络功能,经历了从各设备厂家物理机无统一标准的传统设备(mips、x86、np),演进到物理设备基本统一x86服务器,上层应用虚拟化,继续演进到云、云原生。短

10年间,4G演进到5G,5G在2020年走向成熟。

4G走向5G,电信设备从传统设备演进到虚拟化、云化、时代,软硬件架构都发生了翻天覆地的变化。电信业引入了很多IT的软件架构、思维、方法等;开源、APP和基础设施解耦等给电信应用带来了很多好处、便利,同时也带来了新的问题,其中对电信运维方式产生了较大的影响。

在2G/3G/4G传统设备时,业务一旦出现问题,运维人员不需要太多区分是硬件故障还是软件故障,设备本身先进行软硬件一体的主备倒换,先恢复业务,再进行故障定位。

在当前云时代,基础设施集中化,中心DC物理设备规模庞大(>1000),网络功能分布式打散分布在不同的物理节点上,一旦出现故障,原有的软硬件一体化主备倒换方式不再有效,需要更有效性自动化识别能力,识别故障根源是硬件原因、云平台原因、还是上层VNF的原因,快速区别出故障的根本原因,才能快速对故障进行有效隔离和恢复。

实现自动化和智能化的网络运维,是5G成熟关键技术。智能监控、故障分析,是自动化运维中关键技术。

一、    智能监控

智能监控的目标是,软件自动化发现系统运行异常,自动触发下一步对异常的分析,从而定位出系统异常根源,快速修复故障。
实现智能监控有两种方式:直接方式和间接方式。

直接方式,对环境、硬件(计算、存储、网络)、Cloud OS等关键设施进行指标监控,一旦出现异常数据,进行直接的故障告警、定位;

间接方式,对5G业务关键KPI进行监控和多维度的对比分析,通过分析发现KPI异常判断故障是否发生,从而触发故障进一步关联分析定位;多维度的对比分析可以从几个方面进行。

  • 历史数据对比方式。历史总是相似相近,历史数据对比分析按天、周、月、年、节假日历史数据综合进行,通过AI算法预先给出下一阶段(小时、天)KPI预测数据,再根据实时采集得到的数据,对比判断系统是否异常;
  • 同类对比方式。同类型的5G NF的同类KPI变化应该趋于一致,一旦出现较大(超过域值)波动,可以判断系统异常;单一的NF内部,不同微服务的处理KPI同样也应该趋同,如果不一致同样也可以判断系统异常。

二、    故障分析。

故障根源分析可以从两个方面入手,告警、日志。在监控系统发现系统异常后,触发纵向分层告警、分层日志关联分析;横向关联NF内微服务间,NF-NF间进行关联分析,定位故障根源。

1,    纵向关联。

纵向关联在垂直架构上,网络构包括物理层、虚拟层、业务层三个层次,当底层出现故障时,将影响上层业务。如图1:

图1, 三层架构示意图

纵向关联解决的关键问题:底层硬件、虚拟层故障一旦发生时,上层业务KPI等指标会出现异常,垂直关联把上层业务的异常和底层故障关联起来,识别出根故障的根源是在哪个层次PIM层、VIM层还是VNF业务本身。

2,横向关联。

  • 在水平层次上,VNF内部的微服务间存在业务流程关联,存在相互影响的关系,微服务间横向关联用作发现出问题根本原因的微服务,如图2。

图2,同一VNF内不同微服务集群示意图

  • 在VNF-VNF间业务流程在不同节点间流转时,如果某个节点发生故障,也将影响到与其相关的其他节点,如图3。比如:AMF、SMF、PCF、UDM等相互之间的关联影响,是业务流程的不同节点。

图3. 不同VNF互联示意图

综上可知,横向关联能够解决的关键问题在于,把一个网元的故障和另一个业务相关网元的故障关联起来,把一个微服的故障和真正出问题的微服务关联,在应用层这同一层次识别出真正出问题的微服务或组件。

3,    常用技术

常用技术包括:数据采集、数据分类(清洗)、数据监控、数据关联、定层定位等。

  • 数据采集:业务告警、业务kpi、业务配置操作日志、网络设备操作日志、存储设备操作日志、虚拟设备操作日志、虚拟层平台操作日志、虚拟层系统运行日志等;
  • 数据分类:数据在清洗分类时主要有几个标签,如时间、位置、我影响谁(分类标签)、谁影响我(分类标签)。分类标签有网络、主机、存储、配置;
  • 数据监控:一般对上层KPI进行监控,KPI数据是统计数据,可以引入AI算法,对异常KPI进行判断,一旦出现异常数据,判断系统出现故障,触发故障根源分析系统;
  • 数据关联:主要根据预置的模板进行,模板以标签的形式进行关联,其中位置、时间、我影响谁、谁影响我,是数据关联主要依据;
  • 定层定位:通过数据关联,从上往下(业务、虚层、物理层)确定最终的关联节点,水平关联通过“分类标签”最终找到故障起因的网元、微服务或组件。

自动化运维的关键技术,除了故障监控和故障根源分层关联分析,故障自愈能力、全局透视、跨域全方位数据采集能力、全网网络拓扑管理、一键自动化测试、一键自动化业务部署等,都是智能运维应具备的成熟商用能力。智能运维,能化繁为简,降低5G云原生及服务化软件架构带来的系统维护复杂性,聚焦5G业务本身,为客户创造更大价值!